Bioorthogonal Prodrug Activation Driven by a Strain-Promoted 1,3-Dipolar Cycloaddition

Siddarth S. Matikonda, Douglas L. Orsi, Verena Staudacher, Imogen A. Jenkins, Franziska Fiedler, Jiayi Chen and Allen B. Gamble

Chemical Science, 2015, 6, pp. 1212-1218

(University of Otago, Dunedin, New Zealand)

A. Manos-Turvey, Wipf Group Current Literature February 28th, 2015

Prodrugs for Cancer Therapies

- Non-selectivity in cancer treatments leads to off-target side-effects
- Prodrug activation is seen as a viable method allowing for direct drug delivery
 - Cleavage of a deactivating linker, leading to activation
 - Can react with off-target sources due to hydrolysis
- Antibody-Drug Conjugates (ADCs)
 - ADCs can elicit an immune system response
 - The linkers need to be fine tuned between stability and "cleavability"
 - Drugs become diluted as this is dependent on cell surface receptors, leading to < potent

R.V.J. Chari, M.L. Miller, W.C. Widdison, *Angew. Chem.*, **2014**, *53*, 3796-3827 ig: http://static.cdn-seekingalpha.com/uploads/2014/1/19447671_13889572897936_1.jpg

Prodrugs for Cancer Therapies

- Antibody-Directed Enzyme Prodrug Therapy (ADEPT)
 - Targets an antibody-enzyme conjugate to a cancer cell
 - Limited to human enzymes, to avoid anti-enzyme immune responses

K.D. Bagshawe, S.K. Sharma, R.H.J. Begent, *Expert Opin. Biol. Ther.*, **2004**, *4*, 1777-1789 K.-C. Chen, S.-Y. Wu, Y.-L. Leu, Z.M. Prijovich, B.-M. Chen, H.-E. Wang, T.-L. Cheng, S.R. Roffler, *Bioconjugate Chem.*, **2011**, *22*, 938-948

Prodrugs for Cancer Therapies

- Bioorthogonal Chemistry
 - Not many examples for *in vitro* prodrug activation

• Staudinger and tetrazine-TCO (Inverse-Electron-Demand Diels-Alder Cycloadditions) reactions have been used.

K. Lang, J.W. Chin, Chem. Rev., 2014, 4764-4806

• TCO/tetrazine prodrug activation difficulties:

- Lower TCO-conjugate activity
- Low tumour-to-background ADC ratio, leading to off target effects
- **TCO**-prodrug variant may isomerise to *cis* form if administered separately

R.M. Versteegen, R. Rossin, W. ten Hoeve, H.M. Janssen, M.S. Robillard, Angew. Chem. Int. Ed., 2013, 52, 14112-14116

Prodrugs for Cancer Therapies: 1,3-Dipolar Click Reaction with TCO and Azide

- TCO and Azide for Prodrug Activation!
 - Attach electron-deficient linker to inactive drug
 - TCO identifies target
 - Aqueous environment is key

Rate of Reaction of 1,3-Dipolar Cycloaddition

- TCO/TCO-OH activation results in coumarin release
- RP-HPLC was used to determine the second order rate of the initial 1,3-dipolar cycloaddition
 - MeCN:PBS (1:1, 37 °C), measuring disappearance of SM at 254 nm
 - Comparable rates to those seen with first generation SPAAC (10⁰-10⁻³ M⁻¹ s⁻¹)

Rate of Reaction for Coumarin Release

- 8b and TCO were reacted in CD₃CN and DMSO-d₆ for 19 h to give 11b
- An aliquot of the NMR was then diluted into PBS and the rate of triazoline and imine degradation was monitored spectroscopically by the appearance of **13b**

Rate of Reaction for Coumarin Release

15

- **8b** and TCO were reacted in CD_3CN and $DMSO-d_6$ for 19 h to give **11b**
- An aliquot of the NMR was then diluted into PBS and the rate of triazoline and imine degradation was monitored spectroscopically by the appearance of **13b**

Rate of Reaction for Coumarin Release

15

- **8b** and TCO were reacted in CD₃CN and DMSO-*d*₆ for 19 h to give **11b**
- An aliquot of the NMR was then diluted into PBS and the rate of triazoline and imine degradation was monitored spectroscopically by the appearance of **13b**

 Degradation and release (3 steps) follows pseudo first-order kinetics in polar protic solvents

- Assumption that either triazoline degradation or imine hydrolysis is the rate limiting step
- *In vivo* this rate is less significant as both intermediates will be fixed to a cancer cell surface

- Using a model murine melanoma cell line (B16-OVA), the reaction strategy was evaluated *in vitro* following 72 h incubation with **9** and **10** at 37 °C
 - 9 cytotoxicity alone is low
- The authors propose that **15** is released outside of targeted tumour cells and then diffuses into the closely located cancer cells

Bioorthogonal Potential

- Attachment of 1-6 TCOs to each monoclonal antibody with binding with 10^5 cell surface receptors, [TCO] = 0.4-2.5 μ M on tumour cell surfaces
 - 9 rate of reaction still needs improvement
 - Need to overcome rapid clearance rates from mice ($t_{1/2}$ = mins) for similar compounds
- In vivo suitability was evaluated by monitoring stability and activation of 9 in 50% mouse serum: PBS and PBS only (HPLC analysis)

0 100% (0%) 100% (0%) 100% (0%) 100% (0%) 4 106% (0%) 95% (0%) 84% (34%) 47% (51%) 24 121% (0%) 68% (0%) 39% (77%) 12% (59%) 48 112% (0%) 56% (6%) 12% (79%) 2% (5%)	Time (h)	Degradation of PBS only	f 9 (15 release) PBS + MS	Degradation of 9 (19 PBS only	5 release) + TCO-OH eq PBS + MS
4 106% (0%) 95% (0%) 84% (34%) 47% (51%) 24 121% (0%) 68% (0%) 39% (77%) 12% (59%) 48 112% (0%) 56% (6%) 12% (79%) 2% (5%)	0	100% (0%)	100% (0%)	100% (0%)	100% (0%)
24 121% (0%) 68% (0%) 39% (77%) 12% (59%) 48 112% (0%) 56% (6%) 12% (79%) 2% (5%)	4	106% (0%)	95% (0%)	84% (34%)	47% (51%)
48 112% (0%) 56% (6%) 12% (79%) 2% (5%)	24	121% (0%)	68% (0%)	39% (77%)	12% (59%)
	48	112% (0%)	56% (6%)	12% (79%)	2% (5%)

Bioorthogonal Potential

19

- No reaction deactivation from serum derived byproducts
 - a problem seen with Staudinger prodrug activations
- Investigated if serum protein interactions may reduce effective [9] and therefore activity
 - SPAAC cyclooctyne reactants (added after tumour targeting) interact with serum and show reduced *in vivo* reaction rates
- The reaction proceeds faster in the presence of serum than the model systems of 8a and 8b in MeCN:PBS (k₂ = 0.017-0.027 M⁻¹ s⁻¹)

Conclusions and Scope

- Successfully use a 1,3-dipolar cycloaddition between TCO-OH and an azide, to facilitate prodrug activation
 - Activation is 1-2 orders of magnitude faster than the Staudinger reaction variants (and faster still in serum: PBS mixtures
 - TCO-OH could isomerise, but will be modified with antibody linkers known to stabilise isomerization
 - o Still room to expand on reactivity through modification of the azido-prodrug
 - Good stability in mouse serum (min to h)
- Next step: need to move from the hypothetical to the actual prodrug antibody

